Math Enrichment
 Number Theory

KÂZIM BÜYÜKBODUK

Abstract. These are the notes from my Mathematics Enrichment lectures in November 2023.

1. Modular arithmetic

Suppose a, b, n are integers. We want to solve for x in the congruence

$$
a x \equiv b \quad \bmod n
$$

This amounts to finding $a^{-1} b \bmod n$.
This may not be always possible: $2 y \equiv 1 \bmod 6$ has no solutions, as for a solution, we would have

$$
2|6| 2 y-1
$$

which is impossible.
However: $2 y \equiv 1 \bmod 5$ has a unique solution $\bmod 5: y \equiv 3 \bmod 5$.
The key difference is that

$$
\operatorname{gcd}(2,6)=2>1 \text { whereas } \operatorname{gcd}(2,5)=1
$$

1.1. Suppose $(a, n)=d>1$. Then $a^{-1} \bmod n$ does not exist. Namely, there is no integer y so that $a y \equiv 1 \bmod n$.

Proof. If otherwise,

$$
d|n| a y-1, \text { but also } d|a \Longrightarrow d| 1,
$$

contradicting that $d>1$.
1.2. Let us define

$$
\operatorname{Mod}_{n}^{\times}=\left\{a \bmod n: a \in \mathbb{Z} \text { such that } a^{-1} \quad \bmod n \text { exists }\right\}
$$

Namely, $\operatorname{Mod}_{n}^{\times}$consists of "residue classes" $a \bmod n$ for which their inverses exist modulo n. Yet in other words, $\operatorname{Mod}_{n}^{\times}$ consists of $a \bmod n$ such that one can find an integer y with $a y \equiv 1 \bmod n$.
1.2.1. $\operatorname{Mod}_{n}^{\times}=\{a \bmod n: a \in \mathbb{Z}$ such that $(a, n)=1\}=: S$.

Proof. We already saw that LHS is contained in the RHS. We need to prove the opposite containment. To that end, suppose $b \bmod n$ belongs to RHS, i.e. $\operatorname{gcd}(b, n)=1$. We want to prove that $b^{-1} \bmod n$ exists, namely that we can find some integer y with $b y \equiv 1 \bmod n$.

For that purpose, let us consider the map

$$
M_{b}: S \xrightarrow{x \quad(\bmod n) \mapsto b x \quad(\bmod n)} S
$$

which indeed makes sense since

$$
\operatorname{gcd}(b, n)=1=\operatorname{gcd}(x, n) \quad \Longrightarrow \quad \operatorname{gcd}(b x, n)=1
$$

We claim that the map M_{b} is injective. Indeed,

$$
M_{b}\left(x_{1}\right)=M_{b}\left(x_{2}\right) \Longleftrightarrow b x_{1} \equiv b x_{2} \quad \bmod n \Longleftrightarrow n\left|b\left(x_{1}-x_{2}\right) \Longleftrightarrow n\right| x_{1}-x_{2} \Longleftrightarrow x_{1} \equiv x_{2} \quad \bmod n
$$

where the last equivalence follows from the fact that $\operatorname{gcd} b, n=1$. This proves that M_{b} is indeed injective.
Since the set S is finite (note that we are working $\bmod n$), it follows that the map M_{b} is also surjective (therefore bijective). In particular, there exists a unique $y \bmod n$ with

$$
b y \equiv M_{b}(y \quad \bmod n) \equiv 1 \quad \bmod n \in S
$$

This is what we wanted to prove.

This statement is useful because we can easily compute $\operatorname{gcd}(a, n)$ using the Euclidean algorithm.
1.3. Application: Euler's theorem. Suppose that $\operatorname{gcd}(a, n)=1$. Then

$$
a^{\varphi(n)} \equiv 1 \quad \bmod n,
$$

where

$$
\varphi(n):=\# \operatorname{Mod}_{n}^{\times}=\#\{a: a \in \mathbb{Z} \text { such that } 1 \leq a \leq n \text { and }(a, n)=1\}
$$

Proof. As we saw in the previous proof,

$$
a \operatorname{Mod}_{n}^{\times}=M_{a}\left(\operatorname{Mod}_{n}^{\times}\right)=\operatorname{Mod}_{n}^{\times} .
$$

That shows

$$
\prod_{x \in a \operatorname{Mod}_{n}^{\times}} x=\prod_{x \in \operatorname{Mod}_{n}^{\times}}
$$

But also

$$
\prod_{x \in a \operatorname{Mod}_{n}^{\times}} x=\prod_{y \in \operatorname{Mod}_{n}^{\times}} a y=a^{\varphi(n)} \times \prod_{y \in \operatorname{Mod}_{n}^{\times}} y
$$

Combining these two equalities, we deduce that

$$
a^{\varphi(n)} \times \underbrace{\prod_{y \in \operatorname{Mod}_{n}^{\times}}}_{\Pi} y=\prod_{y \in \operatorname{Mod}_{n}^{\times}} y
$$

This shows

$$
n \mid \Pi\left(a^{\varphi(n)}-1\right)
$$

and since $\operatorname{gcd}(\Pi, n)=1$, also that $n \mid a^{\varphi(n)}-1$.

2. Chinese Remainder Theorem (CRT)

Suppose that $n_{1}, \cdots, n_{k} \in \mathbb{Z}$ are pairwise coprime. Suppose that $a_{1}, \cdots, a_{k} \in \mathbb{Z}$ are any k-tuple of integers. Then there exists a unique integer x with $0 \leq x<n_{1} \cdots n_{k}$ verifying the following congruences simultaneously:

$$
\begin{aligned}
x \equiv a_{1} & \bmod n_{1} \\
x \equiv a_{2} & \bmod n_{2} \\
& \vdots \\
x \equiv a_{k} & \bmod n_{k}
\end{aligned}
$$

Example 2.1. There exists a unique integer $0 \leq x<15 \times 28 \times 169$ such that

$$
\begin{array}{cc}
x \equiv 4 & \bmod 15 \\
x \equiv 23 & \bmod 28 \\
x \equiv 127 & \bmod 169
\end{array}
$$

I dare you to prove this by brute force!
Proof of CRT. Let us consider

$$
\operatorname{Mod}_{n}^{+}=\{\{0,1, \cdots, n-1\},+\bmod n\}=\{\{a \bmod n: a \in \mathbb{Z}\},+\bmod n\}
$$

the set of integers modulo n, equipped with addition modulo n. Let us put $N=n_{1} \cdots n_{k}$, and consider the 'diagonal' map ${ }^{1}$

$$
\Delta: \operatorname{Mod}_{N}^{+} \xrightarrow{x \bmod N \mapsto\left(x \bmod n_{1}, \cdots, x \bmod n_{k}\right)} \operatorname{Mod}_{n_{1}}^{+} \times \cdots \operatorname{Mod}_{n_{k}}^{+}
$$

Our goal ${ }^{2}$ is to prove that given $\left(a_{1} \bmod n_{1}, \cdots, a_{k} \bmod n_{k}\right)$ on the RHS, one can find x so that $\Delta(x)=\left(a_{1} \bmod n_{1}, \cdots, a_{k}\right.$ $\left.\bmod n_{k}\right)$. In other words, we contend to prove that Δ is surjective.

Note that the source of Δ has N elements, and its source has $n_{1} \cdots n_{k}=N$ elements as well. As a result, proving that Δ is surjective is the same as proving Δ is injective. This is what we shall verify.

Suppose that we have

$$
\left(x \quad \bmod n_{1}, \cdots, x \quad \bmod n_{k}\right)=\Delta(x)=\Delta(y)=\left(y \bmod n_{1}, \cdots, y \quad \bmod n_{k}\right),
$$

which is equivalent to saying that ${ }^{3}$

$$
x \equiv y \quad \bmod n_{1}
$$

[^0]$$
x \equiv y \quad \bmod 15, x \equiv y \quad \bmod 28, x \equiv y \quad \bmod 169
$$
\[

$$
\begin{array}{ll}
\vdots \\
x \equiv y & \bmod n_{k}
\end{array}
$$
\]

which is to say

$$
n_{1}, \cdots, n_{k} \text { all divide } x-y
$$

But since n_{1}, \cdots, n_{k} are coprime, this the same as requiring that their product

$$
N=n_{1} \cdots n_{k} \text { divides } x-y
$$

which exactly means $x \equiv y \bmod N$, proving that Δ is injective, as required.
2.1. Example. Prove that for any integer n, one can find integers a, b such that $4 a^{2}+9 b^{2}-1$ is divisible by n.
2.1.1. Proof. The idea is to work modulo n, and factor n into a product of powers of primes (fundamental theorem of arithmetic), solve for prime powers (that divide n) and finally, use CRT to patch things up.

In other words, let's first try to find integers a_{p}, b_{p} with

$$
4 a_{p}^{2}+9 b_{p}^{2} \equiv 1 \quad \bmod p^{k}
$$

Case 1: $n=2^{k} \mathrm{p}=2$. We want to find a_{2}, b_{2} with

$$
4 a_{2}^{2}+9 b_{2}^{2} \equiv 1 \quad \bmod 2^{k}
$$

Note that $3^{-1} \bmod 2^{k}$ exists since $\operatorname{gcd}\left(3,2^{k}\right)=1$. Set $b_{2} \equiv 3^{-1} \bmod 2^{k}$ and $a_{2}=0$.
Case 3: $n=p^{k} \mathrm{p}>2$. We wish to find integers a_{p}, b_{p} with

$$
4 a_{p}^{2}+9 b_{p}^{2} \equiv 1 \quad \bmod p^{k}
$$

Since $\operatorname{gcd}\left(2, p^{k}\right)=1$, we know that $2^{-1} \bmod p^{k}$ exists. Put $a_{p} \equiv 2^{-1} \bmod p^{k}$ and $b_{p}=0$.
General case: $n=p_{1}^{k_{1}} \cdots p_{m}^{k_{m}}$, and p_{i} are pairwise distinct primes:
For each index $i=1, \cdots, m$, we have found $\left(a_{p_{i}}, b_{p_{i}}\right)$ such that

$$
4 a_{p_{i}}^{2}+9 b_{p_{i}}^{2} \equiv 1 \quad \bmod p_{i}^{k_{i}}
$$

By CRT, we can choose $a, b \in \mathbb{Z}$ (applied twice) with

$$
\begin{array}{lll}
a \equiv a_{p_{i}} & \bmod p_{i}^{k_{i}}, & i=1, \cdots, m \\
b \equiv b_{p_{i}} & \bmod p_{i}^{k_{i}}, & i=1, \cdots, m
\end{array}
$$

Then,

$$
4 a^{2}+9 b^{2} \equiv 4 a_{p_{i}}^{2}+9 b_{p_{i}}^{2} \equiv 1 \quad \bmod \quad \bmod p_{i}^{k_{i}}, \text { for all } i=1, \cdots, m
$$

This shows

$$
p_{i}^{k_{i}} \text { divides } 4 a^{2}+9 b^{2}-1 \text { for all } i=1, \cdots, m
$$

Since p_{1}, \cdots, p_{m} are pairwise distinct, this means that their product

$$
p_{1}^{k_{1}} \cdots p_{m}^{k_{m}}=n \text { divides } 4 a^{2}+9 b^{2}-1
$$

3. Quadratic residues

Question 3.1. What are the squares in $\operatorname{Mod}_{n}^{\times}$? Namely, describe the subset

$$
\square_{n}:=\left\{a \in \mathbb{Z}: \operatorname{gcd}(a, n)=1 \text { and } a=x^{2} \text { for some integer } s\right\}
$$

The elements of \square_{n} are sometimes called "quadratic residues mod n ".
3.1. Suppose that p is an odd prime. We will describe the set of quadratic residues $\square_{p} \bmod p$ using the following fact without proof.
3.1.1. $\operatorname{Mod}_{p}^{\times}$contains a primitive root. Namely, there is an integer g coprime to p such that

$$
\operatorname{Mod}_{p}^{\times}=\left\{g \quad \bmod p, g^{2} \quad \bmod p, \cdots, g^{p-1} \equiv 1 \quad \bmod p\right\}
$$

where the final congruence is Fermat's little theorem (which follows from Euler's theorem that we discussed earlier).
Example 3.2. $g=3$ is a primitive root modulo 17 (why?). In general, it is very difficult to find primitive roots.
3.1.2. Suppose that g is a primitive root modulo p. Then observe that

$$
\begin{equation*}
\square_{p} \supseteq\left\{g^{2}, \cdots, g^{p-1}\right\}=\text { even powers of } g \tag{3.1}
\end{equation*}
$$

Lemma 3.3. $\square_{p} \supset\left\{g^{2}, \cdots, g^{p-1}\right\}$. In particular, there are $\frac{p-1}{2}$ quadratic residues modulp p.

Proof. In view of the containment (3.1), we need to show that odd powers of g are not squares modulo p.
Suppose on the contrary that $g^{2 r+1} \in \square_{p}$; namely, $x^{2} \cong g^{2 r+1} \bmod p$. Since $(g, p)=1, g^{-1} \bmod p$ exists, and we have

$$
y^{2} \equiv\left[x\left(g^{-1}\right)^{r}\right]^{2} \equiv g \quad \bmod p
$$

Raise both sides of this congruence to the power $\frac{p-1}{2}$:

$$
1 \equiv y^{p-1} \equiv g^{\frac{p-1}{2}} \quad \bmod p
$$

which is impossible since g is a primitive root modulo $p\left(\right.$ why $\left.?^{4}\right)$.

It is therefore desirable to know which modulus admits a primitive root. Here's the conclusive statement in this vein:
Theorem 3.4. $\operatorname{Mod}_{n}^{\times}$has a primitive root, i.e. there exists an integer such that

$$
\operatorname{Mod}_{n}^{\times}=\left\{g, g^{2}, \cdots, g^{\varphi(n)} \quad \bmod n\right\}
$$

if and only if

- either $n=p^{\alpha}$ where p is an odd prime and α is a positive integer,
- or $n=2 p^{\alpha}$ where p is an odd prime and α is a positive integer,
- $n=2,4$.
3.1.3. Application: Wilson's theorem. Let g be a primitive root modulo a prime number p. Note that

$$
(p-1)!\equiv \prod_{j=1}^{p-1} g^{k}=g^{\frac{p(p-1)}{2}} \bmod p
$$

Note also that $g^{\frac{p-1}{2}} \equiv-1 \bmod p$. Indeed, if we put $y:=g^{\frac{p-1}{2}} \bmod p$, note then that

$$
y^{2} \equiv 1 \quad \bmod p
$$

and hence (since p is a prime)

$$
p \text { divides } y-1 \text { or } y+1
$$

in other words,

$$
y \equiv 1 \quad \bmod p \quad \text { or } \quad y \equiv-1 \quad \bmod p
$$

To verify our claim, we only need to explain that $g^{\frac{p-1}{2}} \not \equiv 1 \bmod p$. This follows from the choice of g as a primitive root (see the footnote).

This shows that

$$
(p-1)!\equiv-1 \quad \bmod p
$$

which is known as Wilson's theorem. There're other proofs of it and you're invited to think about one.

[^1]$$
g \text { is a primitive root } \Longleftrightarrow p-1=\min \left\{k \in \mathbb{Z}^{+}: g^{k} \equiv 1 \quad \bmod p\right\} .
$$
3.1.4. Example. Prove that if $2^{a} \equiv 2^{b} \bmod 101$ then $a \equiv b \bmod 100$.

Proof. $2^{a} \equiv 2^{b} \bmod 101 \Longleftrightarrow 2^{a-b} \equiv 1 \bmod 101$, and $a \equiv b \bmod 100 \Longleftrightarrow a-b \equiv 0 \bmod 100$. Our problem is therefore equivalent to checking that, on setting $m: a-b$,

$$
2^{m} \equiv 101 \Longleftrightarrow 100 \mid m
$$

This is equivalent to checking that 2 is a primitive root modulo the prime 101 (convince yourself why this is so).
To check that, you need to check that $2^{d} \not \equiv 1 \bmod 101$ for positive integers $d \mid 100$ with $d<100$ (convince yourself why checking this is indeed necessary and sufficient). In other words, you need to check that the set

$$
\left\{2,2^{2}, 2^{4}, 2^{5}, 2^{10}, 2^{20}, 2^{25}, 2^{50} \bmod 101\right\}
$$

does not contain $1 \bmod 101$. Do that!
3.1.5. Example. Suppose that p is an odd prime. Find all integers k such that

$$
1^{k}+2^{k}+\cdots+(p-1)^{k}=: S_{k}
$$

is divisible by p.
3.1.6. Solution. The idea is that calculating the sum of geometric sequences is easy:

$$
(1-x)\left(1+x+\cdots+x^{m}\right)=1-x^{m+1} \quad \Longrightarrow \quad\left(1+x+\cdots+x^{m}\right)=\frac{1-x^{m+1}}{1-x}
$$

So we would like to convert the sum above to look like the sum of a geometric sequence. To do that, we will use the fact that we have a primitive root g modulo p.

Note that, for g as above, we have

$$
\{1, \cdots, p-1\} \quad \bmod p=\left\{g^{0}=1, g^{1}, \cdots, g^{p-2}\right\} \quad \bmod p .
$$

Note then that

$$
S_{k} \equiv g^{0 \cdot k}+g^{1 \cdot k}+\cdots+g^{(p-2) \cdot k} \quad \bmod p
$$

Using the identity above with $x=g^{k}$ and $m=p-2$, we see that

$$
\left(1-g^{k}\right) S_{k} \equiv 1-\left(g^{k}\right)^{p-1} \equiv 1-\left(g^{p-1}\right)^{k} \equiv 0 \quad \bmod p
$$

In other words,

$$
p \text { divides }\left(1-g^{k}\right) S_{k}
$$

Case 1: $p-1$ does not divide k : In that case, $1-g^{k} \not \equiv 0 \bmod p$, since g is a primitive root modulo p. As a result, p does not divide $1-g^{k}$. Since we saw above that

$$
p \text { divides }\left(1-g^{k}\right) S_{k}
$$

it follows that, since p is a prime, p must divide S_{k}.
As a result, we checked that S_{k} is divisible by p whenever $p-1 \nmid k$.
Case 2: $p-1$ divides k : In that case,

$$
S_{k}=1^{p-1}+2^{p-1}+\cdots+(p-1)^{p-1} \equiv \underbrace{1+\cdots+1}_{p-1 \text { terms }} p-1 \not \equiv 0 \quad \bmod p .
$$

In other words, if $p-1$ divides k, then S_{k} is not divisible by p.
Answer: All integers that are not divisible by $p-1$.

3.2. Quadratic Reciprocity Law (Gauss' "Golden Theorem").

3.2.1. Suppose p is a prime number and a is an integer. We define the Legendre symbol $\left(\frac{a}{p}\right)$ on setting

$$
\left(\frac{a}{p}\right)= \begin{cases}-1 & \text { if } p \nmid a \notin \square_{p} \\ +1 & \text { if } a \in \square_{p} \\ 0 & \text { if } p \mid a\end{cases}
$$

3.2.2. Legendre symbol is multiplicative. We have

$$
\left(\frac{a b}{p}\right)=\left(\frac{a}{p}\right)\left(\frac{b}{p}\right)
$$

Indeed, if a or b is divisible by p, then both sides are equal to 0 . Assume therefore that $p \nmid a b$.
Let g be a primitive root and let m, n be integers so that

$$
g^{m} \equiv a, g^{n} \equiv b \quad \bmod p
$$

Then we would like to check that

$$
\left(\frac{g^{m+n}}{p}\right)=\left(\frac{g^{m}}{p}\right)\left(\frac{g^{n}}{p}\right) .
$$

We have checked earlier that

$$
\left(\frac{g^{k}}{p}\right)=(-1)^{k}
$$

namely that even powers of g are squares $\bmod p$, and odd powers are not. As a result,

$$
\left(\frac{g^{m+n}}{p}\right)=(-1)^{m+n}=(-1)^{m}(-1)^{n}=\left(\frac{g^{m}}{p}\right)\left(\frac{g^{n}}{p}\right)
$$

as desired.
This is somewhat surprising: It tells us that the product of two non-squares $\bmod p$ is a square $\bmod p$.
3.2.3. Quadratic Reciprocity Law. Suppose that p and q are odd primes. Then:
i) $\left(\frac{p}{q}\right)\left(\frac{q}{p}\right)=(-1)^{\frac{(p-1)}{2} \frac{(q-1)}{2}}$.
ii) $\left(\frac{2}{q}\right)=(-1)^{\frac{p^{2}-1}{8}}$.
iii) $\left(\frac{-1}{q}\right)=(-1)^{\frac{p-1}{2}}$.

We actually proved the very last property:

$$
\left(\frac{-1}{q}\right)=\left(\frac{g^{\frac{p-1}{2}}}{q}\right)=(-1)^{\frac{p-1}{2}}
$$

3.2.4. Example. Let us see if 101 is a square modulo 997. This amounts to calculating the Legendre symbol $\left(\frac{101}{997}\right)$. I dare you to decide whether or not there is an x such that $x^{2} \equiv 101 \bmod 997$ using brute force!

Gauss: $\left(\frac{101}{997}\right)=(-1)^{\frac{100 \times 996}{4}}\left(\frac{997}{101}\right)=\left(\frac{997}{101}\right)=\left(\frac{-13}{101}\right)$ where the final equality is because $997 \equiv-13 \bmod 101$. Hence,

$$
\left(\frac{101}{997}\right)=\left(\frac{-13}{101}\right)=\left(\frac{-1}{101}\right)\left(\frac{13}{101}\right)=(-1)^{\frac{100}{2}}\left(\frac{13}{101}\right)=\left(\frac{13}{101}\right) .
$$

Gauss again: $\left(\frac{13}{101}\right)=(-1)^{\frac{12 \times 100}{4}}\left(\frac{101}{13}\right)=\left(\frac{10}{13}\right)$, where the final equality is because $101 \equiv 10$ mod 13 . Hence,

$$
\left(\frac{101}{997}\right)=\left(\frac{10}{13}\right)=\left(\frac{2}{13}\right)\left(\frac{5}{13}\right)=(-1)^{\frac{168}{8}}\left(\frac{5}{13}\right)=-\left(\frac{5}{13}\right) .
$$

Here, the third equality uses QRL(ii).
Gauss once again: $\left(\frac{101}{997}\right)=-\left(\frac{5}{13}\right)=-(-1)^{\frac{4 \times 12}{4}}\left(\frac{13}{5}\right)=-\left(\frac{3}{5}\right)=-1 \times-1=1$, where the penultimate equality is because the only squares modulo 5 are 1 and 4 (check by hand!).

That means 101 is indeed a square modulo 997. Amazing, isn't it?!

[^2]
[^0]: ${ }^{1}$ In the example above, $N=70980$ and the map Δ is given by

 $$
 \Delta: \operatorname{Mod}_{70980}^{+} \xrightarrow{x \bmod 70980 \mapsto(x \bmod 15, x \bmod 28, x \bmod 169)} \operatorname{Mod}_{15}^{+} \times \operatorname{Mod}_{28}^{+} \times \operatorname{Mod}_{169}^{+} .
 $$

 ${ }^{2}$ In the example above, we want to find x such that $\Delta(x)=(4 \bmod 15,23 \bmod 28,127 \bmod 128)$.
 ${ }^{3}$ In the example above, this would mean

[^1]: ${ }^{4}$ Here's a hint: check that, to say that g is primitive root is the same as requiring that $p-1$ is the smallest among the set of positive integers k for which we have $g^{k} \equiv 1 \bmod p$. In other words:

[^2]: Email address: kazim.buyukboduk@ucd.ie

